Article ID Journal Published Year Pages File Type
2007356 Peptides 2008 7 Pages PDF
Abstract

The vasopressin (VP)/oxytocin (OT) superfamily peptides are one of the most widely distributed neuropeptides and/or neurohypophysial hormones, but have ever not been characterized from any deuterostome invertebrates including protochordates, ascidians. In the present study, we show the identification of a novel VP/OT superfamily peptide and its receptor in the ascidian, Ciona intestinalis. Intriguingly, the Ciona VP/OT-related peptide (Ci-VP), unlike other 9-amino acid and C-terminally amidated VP/OT superfamily peptides, consists of 13 amino acids and lacks a C-terminal amidation. Mass spectrometry confirmed the presence of the 13-residue Ci-VP in the neural complex. Furthermore, 10 of 14 cysteines are conserved in the neurophysin domain, compared with other VP/OT counterparts. These results revealed that the VP/OT superfamily is conserved in ascidians, but the Ci-VP gene encodes an unprecedented VP/OT-related peptide and neurophysin protein. Ci-VP was also shown to activate its endogenous receptor, Ci-VP-R, at physiological concentrations, confirming the functionality of Ci-VP as an endogenous ligand. The Ci-VP gene was expressed exclusively in neurons of the brain, whereas the Ci-TK-R mRNA was distributed in various tissues including the neural complex, alimentary tract, gonad, and heart. These expression profiles suggest that Ci-VP, like other VP/OT superfamily peptides, serves as a multifunctional neuropeptides. Altogether, our data revealed both evolutionary conservation and specific divergence of the VP/OT superfamily in protochordates. This is the first molecular characterization of a VP/OT superfamily peptide and its cognate receptor from not only ascidians but also deuterostome invertebrates.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , ,