Article ID Journal Published Year Pages File Type
2010390 Pharmacological Reports 2016 6 Pages PDF
Abstract

BackgroundImatinib mesylate (Glivec®, formerly STI-571) is a selective tyrosine kinase inhibitor used for the treatment of chronic myeloid leukemia and gastrointestinal stromal tumors. However, there are reports suggesting that imatinib could be atheroprotective by lowering plasma low-density lipoprotein (LDL).AimTo investigate the potential inhibitory effect of imatinib on cholesterol uptake in human macrophages as well as its effect on matrix metalloproteinase (MMP) activity.Methods and resultsUptake of fluorescence-labeled LDL was analyzed using flow cytometry. Macrophages treated with imatinib showed a 23.5%, 27%, and 15% decrease in uptake of native LDL (p < 0.05), acetylated LDL (p < 0.01), and copper-modified oxidized LDL (p < 0.01), respectively. Gel-based zymography showed that secretion and activity of MMP-2 and MMP-9 were inhibited by imatinib. Using GeneChip Whole Transcript Expression array analysis, no obvious gene candidates involved in the mechanisms of cholesterol metabolism or MMP regulation were found to be affected by imatinib. Instead, we found that imatinib up-regulated microRNA 155 (miR155) by 43.8% and down-regulated ADAM metallopeptidase domain 28 (ADAM28) by 41.4%. Both genes could potentially play an atheroprotective role and would be interesting targets in future studies.ConclusionOur results indicate that imatinib causes post-translational inhibition with respect to cholesterol uptake and regulation of MMP-2 and MMP-9. More research is needed to further evaluate the role of imatinib in the regulation of other genes and processes.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , , , , , ,