Article ID Journal Published Year Pages File Type
2013513 Pharmacology Biochemistry and Behavior 2010 10 Pages PDF
Abstract

EphBs receptors and their ephrinBs ligands are present in the adult brain and peripheral tissue and play a critical role in modulating multiple aspects of physiology and pathophysiology. Our recent evidence has shown that ephrinBs acted as a sensitizer to participate in peripheral sensitization and hyperalgesia induced by activation of peripheral ephrinBs/EphBs signaling. In the present study, we explored the role of phosphatidylinositol 3-kinase (PI3K) in ephrinB1-Fc-induced pain behaviors. Intraplantar injection of ephrinB1-Fc produced a time- and dose-dependent increase of PI3K-p110γ expression and of phosphorylation of AKT in skin of injection site. Pre-treatment with PI3K inhibitor wortmannin or LY294002 prevented activation of peripheral AKT by ephrinB1-Fc. The activated AKT expressed in peripheral nerve terminals and DRG peptide-containing and small non-peptide-containing neurons. Inhibition of peripheral PI3K signaling dose-dependently prevented and reversed pain behaviors and spinal Fos protein expression induced by intraplantar injection of ephrinB1-Fc. Furthermore, pre-treatment with PI3K inhibitor wortmannin or LY294002 prevented ephrinB1-Fc-induced ERK activation in a dose-dependent manner. These data demonstrated that PI3K and PI3K crosstalk to ERK signaling mediated pain behaviors induced by activation of peripheral ephrinBs/EphBs signaling in mice.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , , , , ,