Article ID Journal Published Year Pages File Type
2013700 Pharmacology Biochemistry and Behavior 2009 7 Pages PDF
Abstract

Despite intensive efforts for its eradication, addiction to both legal and illicit drugs continues to be a major worldwide medical and social problem. Drug addiction is defined as a disease state in which the body relies on a substance for normal functioning and develops physical dependence leading to compulsive and repetitive use despite negative consequences to the user's health, mental state or social life. Psychoactive substances such as cocaine, nicotine, alcohol, and amphetamines are able to cross the blood-brain barrier once ingested and temporarily alter the chemical balance of the brain. Current medications used for the treatment of dependence are typically agonists or antagonists of the drugs of abuse. The complex interrelations of the neuronal circuits have made it difficult to accurately predict the actions of potential agonist/antagonist drugs and have led to undesirable side effects within the central nervous system. Nearly forty years ago, a handful of groups began to explore the possibility of utilizing an individual's own immune machinery to counteract the effects of drug exposure in an approach later termed by our laboratory, immunopharmacotherapy. Immunopharmacotherapy aims to use highly specific antibodies to sequester the drug of interest while the latter is still in the bloodstream. Thus, creation of the antibody–drug complex will blunt crossing of the blood brain barrier (BBB) not only counteracting the reinforcing effects of the drug but also preventing any detrimental side effects on the CNS. In the present mini-review we aim to present a focused summary, including relevant challenges and future directions, of the current state of cocaine and nicotine vaccines as these two programs have been the most successful to date.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, ,