Article ID Journal Published Year Pages File Type
2014020 Pharmacology Biochemistry and Behavior 2009 8 Pages PDF
Abstract
Cognitive deficits are a core feature of schizophrenia that may be linked to abnormalities in GABA and nitric oxide (NO). Subchronic treatment with glutamate receptor antagonists produces similar deficits, providing a useful model to examine potential therapeutics. The present study investigated the effects of subchronic MK-801 (intraperitoneally; 0.5 mg/kg twice daily for 7 days) on amphetamine-induced locomotor activity and reversal learning in the water maze in rats, and the ability of the novel compound GT 1061 (4-methyl-5-(2-nitroxyethyl) thiazole HCl), containing dual pharmacophores producing NO- and GABA-mimetic activity, to ameliorate these effects. MK-801 enhanced locomotor responses to amphetamine. GT 1061 (0.1; not 0.0001, 0.001, 0.01, 1.0 mg/kg) further enhanced locomotion; the pro-GABA drug chlormethiazole (0.1, 1.0 mg/kg) had no significant effect. In saline-pretreated rats GT 1061 (0.1; not 0.0001, 0.001 mg/kg) increased amphetamine-induced locomotion; chlormethiazole (0.1, 1.0 mg/kg) had no effect. In the water maze, MK-801 impaired reversal learning after platform relocation. GT 1061 (0.001, 0.01, 0.1; not 0.0001 or 1.0 mg/kg) attenuated this impairment; chlormethiazole had no significant effect. These ameliorative effects of GT 1061 may be linked to the activation of NO- and GABA-dependent signaling and suggests a new direction for treating cognitive dysfunction in schizophrenia.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , , ,