Article ID Journal Published Year Pages File Type
2014583 Pharmacology Biochemistry and Behavior 2006 10 Pages PDF
Abstract
The present experiment compared the nociceptive threshold and analgesic response to morphine in young (4-5 months) and aged (24 months) rats using peripheral thermal stimulation and intracerebral electrical stimulation. Responses to thermal stimuli were assessed using both the classical tail-flick procedure in which latency of response is the dependent variable and a new method in which threshold in calories of heat is the dependent variable. In the intracerebral nociceptive threshold procedure, electrical stimuli were delivered via an electrode implanted in the mesencephalic reticular formation (MRF), a pain pathway, and the animals were trained to terminate the stimulation by turning a cylindrical manipulandum embedded in one wall of the experimental chamber. For the classical tail-flick method, the aged rats required a greater intensity of stimulation to produce a basal response latency that was between 2.5 and 3.5 s. Using the new psychophysical method for determining the tail-flick threshold, the aged rats' basal thresholds were significantly higher than that of the young rats. However, the basal thresholds obtained by direct stimulation of the MRF failed to show a significant age effect, suggesting that the registration of pain is not different between young and aged rats. These age-related differences in baseline tail-flick response may be due to changes in the spinal reflex associated with aging. Although, there was no difference in the analgesic effects of morphine between young and aged rats using the latency of the tail-flick response, evidence for decreased analgesic response was seen using the tail-flick threshold measure and the intracerebral stimulation threshold method.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , ,