Article ID Journal Published Year Pages File Type
2019 Acta Biomaterialia 2010 9 Pages PDF
Abstract

The regeneration of tissues using biodegradable porous scaffolds has been intensely investigated. Since electrospinning can produce scaffolds mimicking nanofibrous architecture found in the body, it has recently gained widespread attention. However, a major problem is the lack of pore size necessary for infiltration of cells into the layers below the surface, restricting cell colonization to the surfaces only. This study describes a novel twist to the traditional electrospinning technology: specifically, collector plates are designed which allow the formation of very thin layers with pore sizes suitable for cell infiltration. The thin samples could be handled without mechanically damaging the structure and could be transferred into cell culture. These thin layers were stacked layer-by-layer to develop thick structures. Thirty day cultures of fibroblasts show attachment and spreading of cells in every layer. This concept is useful in regenerating thick tissues with uniformly distributed cells and others in in vitro cell culture.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, ,