Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
2019873 | Prostaglandins & Other Lipid Mediators | 2009 | 9 Pages |
Abstract
Glomerular dysfunction and proteinuria characterize focal segmental glomerulosclerosis (FSGS) associated with chronic kidney disease. FSGS is resistant to treatment and a circulating permeability factor (FSPF) frequently causes post-renal transplantation recurrence. In order to explore the role of 5,6-, 8,9-, 11,12- and 14,15-epoxyeicosatrienoic acids (EETs), we determined their effect on FSPF-induced increase in glomerular albumin permeability (Palb) using an in vitro assay. Exogenous 8,9-EET (1-1000Â nM) dose-dependently prevented the FSPF-induced increase in Palb. The other three EET regioisomers, 8,9-EET metabolite, 8,9-dihydroxyeicosatrienoic acid and unrelated 11,14-eicosadienoic acid (100Â nM each) were not effective suggesting specificity of the observed glomerular protection by 8,9-EET. Synthetic analogs of 8,9-EET containing one double bond antagonized the effect of 8,9-EET on the FSPF-induced increase in Palb. Analogs containing two double bonds did not antagonize the effect of 8,9-EET and significantly blocked the FSPF-induced increase in Palb. These novel findings suggest a unique protective role for 8,9-EET in the glomerulus. Stable analogs of 8,9-EET may be valuable in developing effective management/treatment of glomerular dysfunction.
Keywords
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
Mukut Sharma, Ellen T. McCarthy, D. Sudarshan Reddy, Paresh K. Patel, Virginia J. Savin, Meetha Medhora, John R. Falck,