Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
2020832 | Protein Expression and Purification | 2011 | 9 Pages |
Abstract
We previously developed a unique recombinant protein vaccine against plague composed of a fusion between the Fraction 1 capsular antigen (F1) and the V antigen. To determine if overall expression, solubility, and recovery of the F1-V fusion protein could be enhanced, we modified the original fusion. Standard recombinant DNA techniques were used to reverse the gene order such that the V antigen coding sequence was fused at its C-terminus to the N-terminus of F1. The F1 secretion signal sequence (F1S) was subsequently fused to the N-terminus of V. This new fusion protein, designated F1S-V-F1, was then co-expressed with the Y. pestis Caf1M periplasmic chaperone protein in BL21-Star Escherichia coli. Recombinant strains expressing F1-V, F1S-F1-V, or F1S-V-F1 were compared by cell fractionation, SDS-PAGE, Western blotting, and suspension immunolabelling. F1S-V-F1 exhibited enhanced solubility and secretion when co-expressed with Caf1M resulting in a recombinant protein that is processed in a similar manner to the native F1 protein. Purification of F1S-V-F1 was accomplished by anion-exchange and hydrophobic interaction chromatography. The purification method produced greater than 1Â mg of purified soluble protein per liter of induced culture. F1S-V-F1 polymerization characteristics were comparable to the native F1. The purified F1S-V-F1 protein appeared equivalent to F1-V in its ability to be recognized by neutralizing antibodies.
Keywords
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
Jeremy L. Goodin, Bradford S. Powell, Jeff T. Enama, Ronald W. Raab, Robert L. McKown, George L. Coffman, Gerard P. Andrews,