Article ID Journal Published Year Pages File Type
2023078 Regulatory Peptides 2009 6 Pages PDF
Abstract

Substance P (SP) originally found as a neuropeptide in capsaicin-sensitive sensory neurons, had more recently been identified in non-neuronal cells, especially under pathological conditions. Neuronal and non-neuronal SP may perform distinct functions. A simple technique to differentiate different SP sources is currently unavailable. Herein, we describe a two-step sequential acetic acid extraction to differentiate SP source. The efficiency of this two-step extraction in differentiating SP in capsaicin-sensitive neurons was verified by using capsaicin as a tool to deplete SP in sensory neurons. Specifically, Balb-c mice were treated with high dose capsaicin (200 mg/kg). Skin was removed two weeks after treatment. In a separate experiment, lung and skin tissues from control animals (untreated) were incubated in-vitro with capsaicin, and sequential acetic acid extraction was performed. Following capsaicin treatment, both in-vivo and in-vitro, SP recovered in first extraction decreased significantly in lung and skin. Lastly, presence of capsaicin solvent (10% methanol and 10% Tween 80) or protease inhibitor cocktail in solution altered SP EIA test, yielding false positive results. These results demonstrated that SP in capsaicin sensitive sensory neurons was extracted in initial extraction of 15 min while non-neuronal SP was present in second extraction. Because SP in non-neuronal tissues may possibly be more important in pathological conditions, this technique could be useful in determining effects of various treatments on neuronal and non-neuronal SP levels and their consequences.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, ,