Article ID Journal Published Year Pages File Type
2023184 Regulatory Peptides 2008 8 Pages PDF
Abstract
To pursue further the possible de novo biosynthetic pathway of endomorphins in rat brain we raised antibodies to endomorphin-2 conjugate in rabbits. Antiserum R1 recognized endomorphin-2 with good selectivity as compared to endomorphin-1 with a median detection value of 65.5 ± 7.5 pg/tube (n = 7), whereas R4 antiserum recognized both endomorphins with similar sensitivity. Neither antisera recognized YP-related di- or tripeptides or YGGF-related opioid sequences (enkephalins, β-endorphin, dynorphin). Using the same rat brain extraction-RP-HPLC-gradient separation paradigm as previously, antisera detected 144.6 ± 40.0 (n = 3) pg/g wet brain weight endomorphin-2-like immunoreactivity in the fraction corresponding to standard endomorphin-2 retention time and also in the fraction matching endomorphin-2-OH standard retention time (179.1 ± 30.1 pg/g). Since R1 failed to recognize authentic endomorphin-2-OH, the second immunoreactive species must be different from both endomorphin-2 and endomorphin-2-OH. Possible biosynthetic intermediates to endomorphins, synthetic YPFFG and YPWFG had retention times close to the parent endomorphin standards in RP-HPLC gradient separation profile. The former was a μ-opioid receptor agonist of medium potency in the in vitro assays (rat brain RBA>PγS binding and mouse vas deferens), whereas the latter was a weak μ-opioid receptor agonist with a significant δ-opioid receptorial action as well and a definite indication of partial agonism.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , , , , ,