Article ID Journal Published Year Pages File Type
2023319 Regulatory Peptides 2008 7 Pages PDF
Abstract

Proteinase-activated receptor-2 (PAR2) plays a dual role in the respiratory system, being pro- and anti-inflammatory. In human lung epithelial cells (A549), PAR2 activation causes release of interleukin-8 (IL-8) in addition to prostaglandin E2 (PGE2). In the present study, we thus investigated PAR2-triggered signal transduction pathways causing IL-8 formation in A549 cells. SLIGRL-NH2, a PAR2-activating peptide, but not LSIGRL-NH2, a scrambled peptide, elicited release of IL-8 from A549 cells for 18 h, as measured by the ELISA method, an effect being suppressed by inhibitors of MEK, JNK, EGF receptor-tyrosine kinase (EGFR-TK), Src, pan-tyrosine kinases and protein kinase C, but not p38 MAP kinase or cyclooxygenase. SLIGRL-NH2 also up-regulated IL-8 at protein and mRNA levels, as determined by Western blotting and RT-PCR, respectively. The PAR2-triggered up-regulation of IL-8 protein and mRNA was blocked by an inhibitor of MEK, but not clearly by inhibitors of JNK and EGFR-TK. SLIGRL-NH2 actually phosphorylated JNK as well as ERK, the JNK activation being resistant to inhibitors of Src, pan-tyrosine kinases, protein kinase C and EGFR-TK. Our data suggest that PAR2-triggerd IL-8 formation involves transcriptional up-regulation of IL-8 via the MEK–ERK pathway, while the JNK and EGF receptor pathways might rather contribute to a post-transcriptional process for the release of IL-8.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , ,