Article ID Journal Published Year Pages File Type
2023442 Regulatory Peptides 2007 8 Pages PDF
Abstract

Adiponectin, an adipocyte-derived polypeptide hormone, plays an important role in regulating fatty acid oxidation. β-oxidation of fatty acids supplies most of the cardiac energy and carnitine palmitoyltransferase (CPT)-1 serves as a key regulator during this process. To characterize the potential effects of adiponectin on CPT-1, we incubated rat neonatal cardiomyocytes with globular adiponectin (gAd). Results showed that gAd promoted the activity and mRNA expression of CPT-1. The underlying signal pathway involved in this modulatory effect was further investigated. Inhibition of AMP-activated protein kinase (AMPK) with adenine 9-β-d-arabinofuranoside (AraA) completely abrogated gAd-mediated AMPK and acetyl coenzyme A carboxylase (ACC) phosphorylation and suppressed the promotion of CPT-1 activity. gAd also induced the phosphorylation of p38 mitogen-activated protein kinase (MAPK) and peroxisome proliferator-activated receptor (PPAR)-α, which was inhibited by AraA. SB202190, a p38MAPK inhibitor, blocked gAd-stimulated PPAR-α phosphorylation. When AMPK and/or p38MAPK was inhibited, gAd-enhanced mRNA expression of CPT-1 was partially reduced. In conclusion, our study suggests that the activation of AMPK signaling cascade participates in the promotion effect of gAd on CPT-1.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , ,