Article ID Journal Published Year Pages File Type
2023513 Regulatory Peptides 2007 7 Pages PDF
Abstract

Vasostatins (VSs), i.e. the main biologically active peptides generated by the proteolytic processing of chromogranin A (CGA) N-terminus, exert negative inotropism in vertebrate hearts. Here, using isolated working eel (Anguilla anguilla) and frog (Rana esculenta) heart preparations, we have studied the role of the cytoskeleton in the VSs-mediated inotropic response. In both eel and frog hearts, VSs-mediated-negative inotropy was abolished by treatment with inhibitors of cytoskeleton reorganization, such as cytochalasin-D (eel: 10 nM; frog: 1 nM), an inhibitor of actin polymerisation, wortmannin (0.01 nM), an inhibitor of PI3-kinase (PI3-K)/protein kinase B (Akt) signal-transduction cascade, butanedione 2-monoxime (BDM) (eel: 100 nM; frog: 10 nM), an antagonist of myosin ATPase, and N-(6-aminohexil)-5-chloro-1-naphthalenesulfonamide (W7) (eel: 100 nM; frog: 1 nM), a calcium-calmodulin antagonist. These results demonstrate that changes in cytoskeletal dynamics play a crucial role in the negative inotropic influence of VSs on eel and frog hearts.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , , , , ,