Article ID Journal Published Year Pages File Type
2023793 Seminars in Cancer Biology 2011 9 Pages PDF
Abstract

PurposeThis review demonstrates the importance of immunobiology and immunotherapy research for understanding and treating neuroblastoma.Principal resultsThe first suggestions of immune system–neuroblastoma interactions came from in vitro experiments showing that lymphocytes from patients were cytotoxic for their own tumor cells and from evaluations of tumors from patients that showed infiltrations of immune system cells. With the development of monoclonal antibody (mAb) technology, a number of mAbs were generated against neuroblastoma cells lines and were used to define tumor associated antigens. Disialoganglioside (GD2) is one such antigen that is highly expressed by virtually all neuroblastoma cells and so is a useful target for both identification and treatment of tumor cells with mAbs. Preclinical research using in vitro and transplantable tumor models of neuroblastoma has demonstrated that cytotoxic T lymphocytes (CTLs) can specifically recognize and kill tumor cells as a result of vaccination or of genetic engineering that endows them with chimeric antigen receptors. However, CTL based clinical trials have not progressed beyond pilot and phase I studies. In contrast, anti-GD2 mAbs have been extensively studied and modified in pre-clinical experiments and have progressed from phase I through phase III clinical trials. Thus, the one proven beneficial immunotherapy for patients with high-risk neuroblastoma uses a chimeric anti-GD2 mAb combined with IL-2 and GM-CSF to treat patients after they have received intensive cyto-reductive chemotherapy, irradiation, and surgery. Ongoing pre-clinical and clinical research emphasizes vaccine, adoptive cell therapy, and mAb strategies. Recently it was shown that the neuroblastoma microenvironment is immunosuppressive and tumor growth promoting, and strategies to overcome this are being developed to enhance anti-tumor immunotherapy.ConclusionsOur understanding of the immunobiology of neuroblastoma has increased immensely over the past 40 years, and clinical translation has shown that mAb based immunotherapy can contribute to improving treatment for high-risk patients. Continued immunobiology and pre-clinical therapeutic research will be translated into even more effective immunotherapeutic strategies that will be integrated with new cytotoxic drug and irradiation therapies to improve survival and quality of life for patients with high-risk neuroblastoma.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
,