Article ID Journal Published Year Pages File Type
2028221 Steroids 2010 6 Pages PDF
Abstract

Gene therapy based on gene delivery is a promising strategy for the treatment of various human diseases such as cancer. Cationic lipids represent one of the important synthetic gene delivery systems. There is a great interest in imaging of gene therapy using the biomedical imaging technique positron emission tomography (PET). Carbon-11-labeled cholesterol-based cationic lipids were first designed and synthesized as new potential PET probes for imaging of gene delivery in cancer. The [11C-methyl]quaternary amine target tracers, N-[11C]methyl-N-[4-(cholest-5-en-3β-yloxycarbonyl)butyl]pyrrolidinium iodide ([11C]4a), N-[11C]methyl-N′-[4-(cholest-5-en-3β-yloxycarbonyl)butyl]imidazolium iodide ([11C]4b), N-[11C]methyl-N-[4-(cholest-5-en-3β-yloxycarbonyl)butyl]piperidinium iodide ([11C]4c), N-[11C]methyl-N-[4-(cholest-5-en-3β-yloxycarbonyl)butyl]-4-methylpiperidinium iodide ([11C]4d), and N-[11C]methyl-N-[4-(cholest-5-en-3β-yloxycarbonyl)butyl]morpholinium iodide ([11C]4e), were prepared from their corresponding tertiary amine precursors with [11C]methyl iodide ([11C]CH3I) through N-[11C]methylation and isolated by a simplified solid-phase extraction (SPE) method using a Silica Sep-Pak cartridge in 50–60% radiochemical yields decay corrected to end-of-bombardment (EOB), based on [11C]CO2, and 111–185 GBq/μmol specific activity at the end of synthesis (EOS).

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , , ,