Article ID Journal Published Year Pages File Type
2028700 Steroids 2008 10 Pages PDF
Abstract

Progesterone in sublethal concentrations temporarily inhibits growth of Hortaea werneckii. This study investigates some of the compensatory mechanisms which are activated in the presence of progesterone and are most probably contributing to escape from growth inhibition. These mechanisms lead on the one hand to progesterone biotransformation/detoxification but, on the other, are suggested to increase the resistance of H. werneckii to the steroid. Biotransformation can detoxify progesterone efficiently in the early logarithmic phase, with mostly inducible steroid transforming enzymes, while progesterone biotransformation/detoxification in the late logarithmic and stationary phases of growth is not very efficient. The relative contribution of constitutive steroid transforming enzymes to progesterone biotransformation is increased in these latter phases of growth. In the presence of progesterone, activation of the cell wall integrity pathway is suggested by the overexpression of Pck2 which was detected in the stationary as well as the logarithmic phase of growth of the yeast. Progesterone treated H. werneckii cells were found to be more resistant to cell lysis than mock treated cells, indicating for the first time changes in the yeast cell wall as a result of treatment with progesterone.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , , , ,