Article ID Journal Published Year Pages File Type
2030346 Structure 2006 10 Pages PDF
Abstract

SummaryPheromone-binding proteins are postulated to contribute to the exquisite specificity of the insect's olfactory system, acting as a filter by preferentially binding only one of the components of the natural pheromone. Here, we investigated the possible discrimination of the two very similar components of the natural pheromone gland from the silk moth, Bombyx mori, bombykol and bombykal, by the only pheromone-binding protein (BmorPBP) known to be expressed in the pheromone-detecting sensilla. Free-energy calculations and virtual docking indicate that both bombykol and bombykal bind to BmorPBP with similar affinity. In addition, in vitro competitive binding assays showed that both bombykol and bombykal were bound by BmorPBP with nearly the same high affinity. While BmorPBP might filter out other physiologically irrelevant compounds hitting the sensillar lymph, discrimination between the natural pheromone compounds must be achieved by molecular interactions with their cognate receptors.

Keywords
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , ,