Article ID Journal Published Year Pages File Type
2030845 Trends in Biochemical Sciences 2012 10 Pages PDF
Abstract

The majority of eukaryotic proteins are subjected to N-terminal acetylation (Nt-acetylation), catalysed by N-terminal acetyltransferases (NATs). Recently, the structure of an NAT–peptide complex was determined, and detailed proteome-wide Nt-acetylation patterns were revealed. Furthermore, Nt-acetylation just emerged as a multifunctional regulator, acting as a protein degradation signal, an inhibitor of endoplasmic reticulum (ER) translocation, and a mediator of protein complex formation. Nt-acetylation is regulated by acetyl-coenzyme A (Ac-CoA) levels, and thereby links metabolic cell states to cell death. The essentiality of NATs in humans is stressed by the recent discovery of a human hereditary lethal disease caused by a mutation in an NAT gene. Here, we discuss how these recent findings shed light on NATs as major protein regulators and key cellular players.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , ,