Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
2031080 | Trends in Biochemical Sciences | 2010 | 7 Pages |
Multidrug ABC transporters can transport a wide range of drugs from the cell. Ongoing studies of the prototype mammalian multidrug resistance ATP-binding cassette transporter P-glycoprotein (ABCB1) have revealed many intriguing functional and biochemical features. However, a gap remains in our knowledge regarding the molecular basis of its broad specificity for structurally unrelated ligands. Recently, the first crystal structures of ligand-free and ligand-bound ABCB1 showed ligand binding in a cavity between its two membrane domains, and earlier observations on polyspecificity can now be interpreted in a structural context. Comparison of the new ABCB1 crystal structures with structures of bacterial homologs suggests a critical role for an axial rotation of transmembrane helices for high-affinity binding and low-affinity release of ligands during transmembrane transport.