Article ID Journal Published Year Pages File Type
20700 Journal of Bioscience and Bioengineering 2013 5 Pages PDF
Abstract

A ω3-fatty acid desaturase gene (maw3) which is involved in biosynthesis of n-3 polyunsaturated fatty acids (PUFAs) was previously isolated from Mortierella alpina 1S-4. In this report, we investigated the products of MAW3 catalyzing reaction with endogenous and exogenous fatty acids in the yeast transformant. Two unusual fatty acids de novo synthesized in the yeast transformant expressing maw3 gene were identified as n-4 hexadecadienoic acid (16:29cis,12cis) and n-1 hexadecatrienoic acid (16:39cis,12cis,15) by GC–MS and 1H NMR analyses. In addition to the desaturation activity at the ω3-position for 18- and 20-carbon PUFAs, MAW3 in the yeast transformant inserted a double bond at Δ12-position of endogenous palmitoleic acid (16:19cis) and further at Δ15-position of the resulting 16:29cis,12cis to result in the formation of 16:39cis,12cis,15 leading to a bifunctional Δ12/Δ15-desaturase for 16-carbon fatty acids. Moreover, we evaluated the activity of MAW3 in the yeast transformant under different temperatures. The MAW3 did not have desaturation activities in M. alpina 1S-4 at 28°C but it had in the yeast transformant for various fatty acids. The MAW3 was demonstrated to be a trifunctional Δ12/Δ15/ω3-desaturase, exhibiting Δ12-desaturation for 16:19cis, Δ15-desaturation for 16- and 18-carbon fatty acids that had a preexisting cis-double bond at Δ12 position, and ω3-desaturation for 20-carbon fatty acids having that at Δ14-position. It is the first report that the fatty acid desaturase (MAW3) is shown to have Δ12- and Δ15-desaturation activities for a 16-carbon fatty acid, in addition to its major function, ω3-desaturation activity.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , , , , , , ,