Article ID Journal Published Year Pages File Type
2090390 Journal of Microbiological Methods 2011 7 Pages PDF
Abstract

Treatment of microbiological samples with viability dyes prior to extraction of DNA and PCR amplification for downstream analysis has evolved into a commonly applied method. The addition of this easy-to-perform step to the sample analysis procedure inhibits the amplification of DNA from dead cells with compromised cell membranes. The method is currently used both in combination with quantitative PCR (qPCR), end-point PCR, and isothermal amplification. We present here a detailed study of the effect of amplicon size on amplification signals from unstressed and heat-exposed cells after treatment with propidium monoazide (PMA). PMA treatment was shown to be more efficient in excluding dead cells from the analysis both in combination with qPCR (PMA-qPCR) and denaturing gradient gel electrophoresis (PMA-DGGE), when longer amplicons were used. When applied to pure cultures of the fish pathogens Vibrio anguillarum and Flavobacterium psychrophilum exposed to a heat gradient ranging from mild to lethal, qPCR product lengths did not influence PMA-qPCR results at low temperatures, whereas an increasingly strong impact was seen at higher temperatures. Membrane permeability as a result of heat exposure might however have to be considered a conservative parameter for cell death for these pathogens as culturability and redox activity were lost at lower stress intensities than membrane integrity. When applying PMA-DGGE to an environmental water sample which was either left untreated or was exposed to heat, differences to non-PMA treated samples tended to slightly increase when amplified fragments in the first round of the nested PCR were longer, whereas the impact of 1st-round cycle numbers remains unclear.

► We examine the influence of amplicon length on viability PCR results. ► Propidium monoazide is used as viability dye to exclude signals from dead cells. ► Dead cell exclusion is more efficient when longer sequences are amplified. ► The effect of amplicon length depends on the stress intensity cells have been exposed to. ► Membrane integrity is a conservative indicator of cell death in case of heat killing.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biotechnology
Authors
, , , ,