Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
2090669 | Journal of Microbiological Methods | 2009 | 9 Pages |
A genomic DNA-based microarray was constructed containing over 6000 randomly cloned genomic fragments of approximately 1–2 kb from six mammalian intestinal Bifidobacterium spp. including B. adolescentis, B. animalis, B. bifidum, B. catenulatum, B. longum and B. pseudolongum. This Bifidobacterium Mixed-Species (BMS) microarray was used to differentiate between type strains and isolates belonging to a set of nine Bifidobacterium spp. Hierarchical clustering of genomic hybridization data confirmed the grouping of the Bifidobacterium spp. according to the 16S rRNA-based phylogenetic clusters. In addition, these genomic hybridization experiments revealed high homology between the type-strain B. animalis subsp. lactis LMG18314 and B. animalis subsp. animalis LMG10508 (79%) as well as between the type strains B. longum biotype longum LMG13197 and B. longum biotype infantis LMG8811 (72%) — nevertheless, discrimination between these species was possible due to the high resolution output of the BMS-array. In addition, it was shown that the BMS-array could be used for assigning unknown Bifidobacterium isolates to a species group. Finally, a set of 54 diagnostic clones for Bifidobacterium identification was selected and sequenced to advance the understanding of the species-related differences. Remarkably, a large fraction (31%) of these was predicted to encode proteins that belong to the bifidobacterial glycobiome and another 11% had functional homology with genes involved in the protection against foreign DNA. Overall, the BMS-microarray is a high-resolution diagnostic tool that is able to facilitate the detection of strain- and species-specific characteristics of bifidobacteria.