Article ID Journal Published Year Pages File Type
2091224 Journal of Microbiological Methods 2007 11 Pages PDF
Abstract

Gene expression analysis provides significant insight to understand regulatory mechanisms of biology, yet acquisition and reproduction of quality data, as well as data confirmation and verification remain challenging due to a lack of proper quality controls across different assay platforms. We present a set of six universal external RNA quality controls for microbial mRNA expression analysis that can be applied to both DNA oligo microarray and real-time qRT-PCR including using SYBR Green and TaqMan probe-based chemistry. This set of controls was applied for Saccharomyces cerevisiae and Pseudomonas fluorescens Pf-5 microarray assays and qRT-PCR for yeast gene expression analysis. Highly fitted linear relationships between detected signal intensity and mRNA input were described. Valid mRNA detection range, from 10 to 7000 pg and from 100 fg to 1000 pg were defined for microarray and qRT-PCR assay, respectively. Quantitative estimation of mRNA abundance was tested using randomly selected yeast ORF including function unknown genes using the same source of samples by the two assay platforms. Estimates of mRNA abundance by the two methods were similar and highly correlated in an overlapping detection range from 10 to 1000 pg. The universal external RNA controls provide a means to compare microbial gene expression data derived from different experiments and different platforms for verification and confirmation. Such quality controls ensure reliability and reproducibility of gene expression data, and provide unbiased normalization reference for validation, quantification, and estimate of variation of gene expression experiments. Application of these controls also improves efficiency and facilitates high throughput applications of gene expression analysis using the qRT-PCR assay.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biotechnology
Authors
, ,