Article ID Journal Published Year Pages File Type
21267 Journal of Bioscience and Bioengineering 2012 6 Pages PDF
Abstract

Acetobacter aceti NBRC 14818 shows a diauxic growth profile and temporarily accumulates acetate when grown in medium containing ethanol. However, the mechanisms underlying the metabolic switching between the incomplete oxidation of ethanol and overoxidation of acetate, and the control of stress resistance systems in A. aceti cells grown on ethanol are not fully understood. In this study, time-dependent transcriptome changes in cells during growth on ethanol were analyzed by DNA microarray. In A. aceti, ethanol is oxidized to acetate via acetaldehyde by sequential reactions of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH). We found that the genes encoding pyrroloquinoline quinone-dependent ADH, membrane-bound ALDH, and two NAD+-ADHs were expressed constitutively in cells throughout the culture period. In contrast, the expression levels of genes encoding tricarboxylic acid (TCA) cycle enzymes were low during acetate accumulation until ethanol was consumed, but were significantly upregulated after the accumulated acetate was started to be consumed. This result suggests that changes in the carbon metabolic flow through the TCA cycle are important for the metabolic switching from acetate accumulation to the overoxidation of acetate. In addition, the genes for glyoxylate pathway enzymes were significantly upregulated soon after the cells began oxidizing ethanol, indicating that this pathway is important for the utilization of ethanol as a carbon source.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , ,