Article ID Journal Published Year Pages File Type
22170 Journal of Bioscience and Bioengineering 2006 7 Pages PDF
Abstract

We have constructed a new metal-binding site in the human metallothionein-2 (hMT-2), using the protein as a scaffold to investigate the structure and function of metal-binding. Potential metal-binding sites were designed within hMT-2 on the basis of structures generated by homology modeling. Amino acid residues D11, C13, C26 and S28 in the β-domain of hMT-2 (hMT-2β) were found, by computer search, to form a potential tetrahedral Cys4 metal-binding site. Six mutant proteins were constructed with the following amino acid substitutions: D11C, S28C and D11C/S28C in hMT-2 and the same mutations in hMT-2β, respectively. These single-mutant and double-mutant proteins bound one gram atom of cadmium or zinc ions per gram molecule of protein more than the corresponding wild-type proteins. The circular dichroism spectra suggested that the structures of the single-mutant proteins that bound Cd or Zn were similar to that of the D11C/S28C double-mutant proteins. To evaluate the metal-binding affinity of the mutant proteins, we performed pH titrations of wild-type and mutant proteins. The stability with changes in pH of all the mutant proteins was higher than that of the wild-type proteins, and that of the double-mutant D11C/S28C protein was highest. Consequently, it appears that we were able to create novel proteins that bound metal ions at high density and with high affinity.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , , ,