Article ID Journal Published Year Pages File Type
23692 Journal of Biotechnology 2012 5 Pages PDF
Abstract

We present an explicit expression for describing the kinetics of cometabolic biotransformation of environmental pollutants. This expression is based on the Lambert W function and explicitly relates the substrate concentration, S, to time, t, the two experimentally measured variables. This explicit relationship simplifies kinetic parameter estimation as differential equation solution and iterative estimation of the substrate concentration are eliminated. The applicability of this new expression for nonlinear kinetic parameter estimation was first demonstrated using noise containing synthetic data where final estimates of the kinetic parameters were very close to their actual values. Subsequently 1.1.1-trichloroethane degradation data at initial concentrations of 750 and 375 μM were described using the explicit expression resulting in r and Ks estimates of 0.26 μM/mg d and 28.08 μM and 0.30 μM/mg d and 28.70 μM, respectively, very similar to 0.276 μM/mg d and 31.2 μM, respectively, that were reported in the original study. The new explicit expression presented in this study simplifies estimation of cometabolic kinetic parameters and can be easily used across all computational platforms thereby providing an attractive alternative for progress curve analysis.

► An explicit expression for describing cometabolism kinetics is presented. ► This eliminates numerical and iterative estimation of the substrate concentration. ► The applicability was demonstrated using both synthetic and experimental data. ► This simplified approach can be implemented across most computational platforms.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
,