Article ID Journal Published Year Pages File Type
24024 Journal of Biotechnology 2011 8 Pages PDF
Abstract

Glutathione (GSH) is one of the most ubiquitous non-protein thiols that is involved in numerous cellular activities. The gene coding for a novel bifunctional enzyme catalyzing the reaction for glutathione synthesis, gshF, was cloned from Streptococcus thermophilus SIIM B218 and expressed in Escherichia coli JM109. In the presence of the precursor amino acids and ATP, the induced cells of E. coli JM109 (pTrc99A-gshF) could accumulate 10.3 mM GSH in 5 h. The S. thermophilus GshF was insensitive to feedback inhibition caused by GSH even at 20 mM. At elevated concentrations of the precursor amino acids and ATP, E. coli JM109 (pTrc99A-gshF) produced 36 mM GSH with a molar yield of 0.9 mol/mol based on added cysteine and of 0.45 mol/mol based on added ATP. When ATP was replaced with glucose, E. coli JM109 (pTrc99A-gshF) produced 7 mM in 3 h. Saccharomyces cerevisiae was used to generate ATP for GSH production. In the presence of glucose and the pmr1 mutant of S. cerevisiae BY4742, JM109 (pTrc99A-gshF) produced 33.9 mM GSH in 12 h with a yield of 0.85 mol/mol based on added l-cysteine. It is shown that the S. thermophilus GshF can be successfully used for GSH production.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , ,