Article ID Journal Published Year Pages File Type
240569 Procedia Chemistry 2011 10 Pages PDF
Abstract

Quantum coherence improves the quantum efficiency of excitonic energy transport within the Fenna-Matthews-Olson photosynthetic complex from the green sulphur bacterium, Chlorobium tepidum. Experimental evidence from third-order nonlinear spectroscopies provides clear evidence of quantum coherence among excited states persisting for picoseconds despite rapid (<100fs) dephasing of quantum coherence between ground and excited states. This protection of quantum coherence can arise from multiple mechanisms, but the net effect is the same: the energetic landscape is course-grained thereby improving efficiency by effectively smoothing the rugged energetic landscape while simultaneously eliminating trap states. The protein bath enables the unusual observed dynamics and illustrates some simple design principles that provide direction to synthetic efforts to mimic the effect. This communication provides an overview of experimental and theoretical notions for those interested in exploiting design principles of photosynthetic energy transfer in synthetic systems.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)