Article ID Journal Published Year Pages File Type
240604 Procedia Chemistry 2010 12 Pages PDF
Abstract

Chromatography which is sensitive to the sizes of macromolecules and to their adsorption serves as an appropriate method to separate complex polymers. Unfortunately, the molar mass also influences the chromatographic retention, thus making quite difficult the problem of separation of polydisperse polymers by their topology.By using a theory of chromatographic behavior of macromolecules, we simulate chromatograms of polydisperse polymers that differ solely in their topology, and discuss possibilities to separate complex polymers (such as eight-, tadpole-, theta-, manacle-shaped polymers, etc.) from their linear, branched, or macrocyclic precursors or topo-isomeric products.As follows from the simulations, two approaches towards the separation of polydisperse polymers by topology are especially promising. The first one is the chromatography at optimized (critical or near-critical) interaction conditions, where molar-mass effects are minimized; The second one consists in combing different chromatographic modes, which allows obtaining a separation by both molar mass and topology in a 2D chromatogram.Some of the simulated chromatographic separations are qualitatively very similar to the real ones, the others are the theoretical prediction.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)