Article ID Journal Published Year Pages File Type
24123 Journal of Biotechnology 2011 8 Pages PDF
Abstract

We have designed, built and tested a three-dimensional (3-D) cell culture system on modified microplates for high-throughput, real-time, proliferation and cytotoxicity assays. In this 3-D culture system, cells expressing the enhanced green fluorescent protein (EGFP) were cultured in nonwoven polyethylene terephthalate (PET) fibrous scaffolds. Compared to 2-D cultures in conventional microplates, 3-D cultures gave more than 10-fold higher fluorescence signals with significantly increased signal-to-noise ratio (SNR), thus extending the application of conventional fluorescence microplate readers for online monitoring of culture fluorescence. The 3-D system was successfully used to demonstrate the effects of fetal bovine serum, fibronectin coating of PET fibers, and cytotoxicity of dexamethasone on recombinant murine embryonic stem D3 cells. The dosage effects of 5-fluorouracil and gemcitabine on high-density colon cancer HT-29 cells were also tested. These studies demonstrated that the 3-D culture microplate system with EGFP expressing cells can be used as a high-throughput system in drug discovery and bioprocess development.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, ,