Article ID Journal Published Year Pages File Type
24128 Journal of Biotechnology 2011 6 Pages PDF
Abstract

Aberrant glycosylation of human tissue inhibitor of metalloproteinase-1 (TIMP-1) by N-acetylglucosaminyltransferase-V (GnT-V) was previously reported to be related to cancer progression. Here, we report on the antibodies recognizing the structural features initiated by an addition of N-linked β(1,6)-N-acetylglucosamine (GlcNAc) branch by GnT-V on TIMP-1. Two glycoforms of TIMP-1, TIMP1-L produced in Lec4 cells without GnT-V activity and TIMP1-B in GnT-V overexpressing transfectant cells, were purified from culture supernatant and used for generation of antibodies. TIMP1-L was injected in the left hind footpad of mice as decoy and TIMP1-B in the right hind footpad as immunogen. Phage-displayed scFv library was constructed from the B cells retrieved from the right popliteal lymph nodes and subjected to panning and screening. Phage ELISA of individual clones revealed the scFv clones with preferential binding activity to TIMP1-B, and they were converted into an scFv-Fc format for further characterization of binding specificity. Glycan binding assay of an antibody, 1-9F, revealed its differential specificity toward an extension of glycan structure initiated with β(1,6)-GlcNAc linkage and terminally decorated with a sialic acid. This study demonstrates feasibility of a new strategy combining decoy immunization with phage display for the efficient generation of antibodies tracking down structural features of different glycoforms.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , , , , , ,