Article ID Journal Published Year Pages File Type
24208 Journal of Biotechnology 2010 5 Pages PDF
Abstract

CB1954 is an anti-cancer prodrug that can be reduced at either of two nitro groups to form cytotoxic metabolites. We describe here two efficient and previously uncharacterized nitroreductases, YfkO from Bacillus subtilis which reduces CB1954 exclusively at the 4-NO2 position, and NfsA from Klebsiella pneumoniae which preferentially reduces the 2-NO2 group. Utilizing these novel enzymes, together with three previously characterized nitroreductases, we demonstrate that the Escherichia coli SOS-chromotest assay can differentially detect the 4-nitro versus 2-nitro reduction products of CB1954 following deletion of the nucleotide excision repair gene uvrB, but not mismatch repair (mutS) or methyltransferase (ada/ogt) genes. These findings may hold significance for identification and selection of nitroreductases for CB1954-mediated gene therapy, particularly when targeting tumors that are deficient in nucleotide excision repair. Moreover, we demonstrate that comparative SOS chromotest analysis in wild type and uvrB mutant strains can be used to determine whether or not nucleotide excision repair plays a significant role in processing DNA damage resulting from activation of different nitroaromatic prodrugs.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , ,