Article ID Journal Published Year Pages File Type
243041 Applied Energy 2013 9 Pages PDF
Abstract

In a bid to increase the cost competitiveness of biodiesel production against mineral diesel, process intensification has been studied for numerous biodiesel processing technologies. Subsequently, reactive extraction or in situ transesterification is actively being explored in which the solid oil-bearing seeds are used as the reactant directly with short-chain alcohol. This eliminates separate oil extraction process and combines both extraction and transesterification in a single unit. Supercritical reactive extraction takes one step further by substituting the role of catalyst with supercritical conditions to achieve higher yield and shorter processing time. In this work, supercritical reactive extraction with methanol was carried out in a high-pressure batch reactor to produce fatty acid methyl esters (FAMEs) from Jatropha curcas L. seeds. Material and process parameters including space loading, solvent to seed ratio, co-solvent (n-hexane) to seed ratio, reaction temperature, reaction time and mixing intensity were varied one at a time and optimized based on two responses i.e. extraction efficiency, Mextract and FAME yield, Fy. The optimum responses for supercritical reactive extraction obtained were 104.17% w/w and 99.67% w/w (relative to 100% lipid extraction with n-hexane) for Mextract and Fy respectively under the following conditions: 54.0 ml/g space loading, 5.0 ml/g methanol to seeds ratio, 300 °C, 9.5 MPa (Mega Pascal), 30 min reaction time and without n-hexane as co-solvent or any agitation source. This proved that supercritical reactive extraction is rather promising as another alternative for biodiesel production.

► Investigation of supercritical reactive extraction process for biodiesel production. ► Focus is given on optimizing methyl esters yield for Jatropha curcas L. seeds. ► Influence of process parameters to the reaction are discussed thoroughly. ► Comparison between the novel reaction with conventional process are studied. ► High methyl esters yield can be obtained without pre-extraction and catalyst.

Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, ,