Article ID Journal Published Year Pages File Type
243169 Applied Energy 2012 11 Pages PDF
Abstract

Gasification plays an important role in the development of clean coal technology. To seek appropriate operations for synthesis gas (syngas) formation, the present study develops a numerical method to predict coal gasification phenomena in an entrained-flow gasifier. Particular emphasis is placed on the influence of injection pattern upon syngas production. The parameter of steam/coal ratio is also taken into account to evaluate its impact on hydrogen generation. The simulations suggest that the developed numerical method is able to provide an accurate prediction on syngas formation. With oxygen injected from the center inlet and coal from the middle ring inlet of the reactor, the operating pattern gives the best performance of coal gasification where the carbon conversion (CC) and coal gas efficiency (CGE) are 89% and 72%, respectively. Increasing steam into the reactor reduces CC and less CO is generated. Nevertheless, more H2 is produced stemming from water gas shift reaction. This results in slight variation in CGE with altering steam/coal ratio. The obtained results have provided a useful insight into the operation of fuel and oxidant injection for coal gasification.

► A numerical method is developed to predict coal gasification phenomena. ► Particular emphasis is placed on the influence of injection pattern upon syngas production. ► The parameter of steam/coal ratio is also taken into account. ► The appropriate injection for the performance of coal gasification is suggested. ► The obtained results have provided a useful insight into the operation of coal gasification.

Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, , ,