Article ID Journal Published Year Pages File Type
243607 Applied Energy 2012 7 Pages PDF
Abstract

Selective emitter for silicon solar cell was realized by employing a-Si thin films as the semi-transparent diffusion barrier. The a-Si thin films with various thicknesses (∼10–40 nm) were deposited by the electron-beam evaporation technique. Emitters with sheet resistances from 37 to 145 Ω/□ were obtained via POCl3 diffusion process. The thickness of the a-Si diffusion barrier was optimized to be 15 nm for selective emitter in our work. Homemade mask which can dissolve in ethanol was screen-printed on a-Si film to make pattern. The a-Si film was then patterned in KOH solution to form finger-like design. Selective emitter was obtainable with one-step diffusion with patterned a-Si film on. Combinations of sheet resistances for the high-/low-level doped regions of 39.8/112.1, 36.2/88.8, 35.4/73.9 were obtained. These combinations are suitable for screen-printed solar cells. This preparation method of selective emitter based on a-Si diffusion barrier is a promising approach for low cost industrial manufacturing.

Graphical abstract.Figure optionsDownload full-size imageDownload as PowerPoint slideHighlights► a-Si thin films as semitransparent phosphorus diffusion barriers for solar cell. ► a-Si thin films on silicon wafers were patterned by the alkaline solution. ► Selective emitter was formed with patterned a-Si as diffusion barrier for solar cell.

Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, , , , ,