Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
243739 | Applied Energy | 2012 | 5 Pages |
Thermophotovoltaic (TPV) cells can convert infrared radiation into electricity. They open up possibilities for silent and stand-alone power production in fuel-fired heating equipment. Similarly, thermoelectric (TE) devices convert thermal energy directly into electricity with no moving parts. However, TE devices have relatively low efficiency for electric power generation. In this study, the concept of cascading TPV and TE power generation was developed where the used heat stream is taken from the TPV and applied to the input of a TE converter. A prototype cascading TPV and TE generation system was built and tested. GaSb TPV cells and an integrated semiconductor TE converter were used in the cascading power system. The electric output characteristics of the TPV cells and the TE converter have been investigated in the power generation system at various operating conditions. Experimental results show that the cascading power generation is feasible and has the potential for certain applications.
► A novel cascading thermophotovoltaic (TPV) and thermoelectric (TE) power generation system is proposed and developed. ► The used heat stream is taken from the TPV and applied to the input of a TE converter in the system. ► A prototype was built and tested where GaSb TPV cells and PbSnTe-based TE converter were used. ► The TPV cells generate 123.5 We whereas the TE converter generates 306.2 We in the prototype. ► It is shown the cascading power generation is feasible in fuel-fired furnaces and can be applied to micro-CHP.