Article ID Journal Published Year Pages File Type
244748 Applied Energy 2010 11 Pages PDF
Abstract

This paper proposes a parabolic dish/AMTEC solar thermal power system and evaluates its overall thermal–electric conversion performance. The system is a combined system in which a parabolic dish solar collector is cascaded with an alkali metal thermal to electric converter (AMTEC) through a coupling heat exchanger. A separate type heat-pipe receiver is selected to isothermally transfer the solar energy from the collector to the AMTEC. To assess the system’s overall thermal–electric conversion performance, a theoretical analysis has been undertaken in conjunction with a parametric investigation by varying relevant parameters, i.e., the average operating temperature and performance parameters associate with the dish collector and the AMTEC. Results show that the overall conversion efficiency of parabolic dish/AMTEC system could reach up to 20.6% with a power output of 18.54 kW corresponding to an operating temperature of 1280 K. Moreover, it is found that the optimal condenser temperature, corresponding to the maximum overall efficiency, is around 600 K. This study indicates that the parabolic dish/AMTEC solar power system exhibits a great potential and competitiveness over other solar dish/engine systems, and the proposed system is a viable solar thermal power system.

Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, , , ,