Article ID Journal Published Year Pages File Type
245141 Applied Energy 2008 12 Pages PDF
Abstract

In the present study, the effect of slip on entropy generation in magnetohydrodynamic (MHD) flow over a rotating disk is investigated by semi-numerical analytical solution technique. The nonlinear governing equations of flow and thermal fields are reduced to ordinary differential equations by the Von Karman approach, then solved via differential transform method (DTM), a recently-developed, powerful analytical method. Related entropy generation equations are derived and nondimensionalized using geometrical and physical flow field-dependent parameters. For a rotating surface the form of slip introduced into the governing equations is rarefaction. For comparison, slip and no-slip regimes in the range 0.1 > Kn > 0 and their interaction with magnetic effects are investigated by minimum entropy generation. While minimizing entropy generation, equipartitioning is encountered between fluid friction irreversibility and Joule dissipation.

Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, , ,