Article ID Journal Published Year Pages File Type
245224 Applied Energy 2007 14 Pages PDF
Abstract

The optimal performance for a class of generalized irreversible universal steady-flow heat-engine cycle models, consisting of two heating branches, two cooling branches and two adiabatic branches, and with losses due to heat-resistance, heat leaks and internal irreversibility was analyzed using finite-time thermodynamics. The analytical formulae for power, efficiency, entropy-generation rate and an ecological criterion of the irreversible heat-engine cycle are derived. Moreover, analysis and optimization of the model were carried out in order to investigate the effect of the cycle process on the performance of the cycles. The results obtained include the performance characteristics of Diesel, Otto, Brayton, Atkinson, Dual and Miller cycles with the losses of heat-resistance, heat leak and internal irreversibility.

Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, , ,