Article ID Journal Published Year Pages File Type
245376 Applied Energy 2007 16 Pages PDF
Abstract

A systematic investigation to understand the impact of axially swept and tangentially leaned blades on the aerodynamic behaviour of transonic axial-flow compressor rotors was undertaken. Effects of axial and tangential blade curvature were analyzed separately. A commercial CFD package, which solves the Reynolds-averaged Navier–Stokes equations, was used to compute the complex flow field of transonic compressor-rotors. It was validated against NASA Rotor 37 existing experimental data. Computed performance maps and downstream profiles showed a good agreement with measured ones. Furthermore, comparisons with experimental data indicated that the overall features of three-dimensional shock structure, shock-boundary layer interaction, and wake development are calculated well by the numerical solution. Next, quite a large number of new transonic swept rotors (26) were modelled from the original Rotor 37, by changing the meridional curvature of the original stacking line through three previously defined control points (located at 33%, 67% and 100% of span). Similarly, 26 new transonic leaned rotors were modelled by changing the circumferential position of the same control points. All the new transonic rotors were simulated and the results revealed many interesting aspects which are believed to be very helpful to better understand the blade curvature effects on shock structure and secondary losses within a transonic rotor.

Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, ,