Article ID Journal Published Year Pages File Type
245464 Applied Energy 2006 18 Pages PDF
Abstract

In this study, laminar heat-convection in a Poiseuille flow of a Newtonian fluid with constant properties is analyzed by taking the viscous dissipation into account. At first, both hydrodynamically and thermally fully-developed flow case is investigated. Then, consideration is given to thermally-developed laminar forced-convection. The axial heat-conduction in the fluid is neglected. Two different thermal boundary-conditions are considered: the constant heat-flux and the constant wall-temperature. Both the hot-wall and the cold-wall cases are considered. In the literature, the viscous-dissipation effect is commonly represented by the Brinkman number. Several different definitions of the Brinkman number arise depending on the thermal boundary conditions. Either for the thermally fully-developed case or the thermally-developing case (the Graetz problem), temperature distributions and the Nusselt numbers are analytically determined as functions of the Brinkman number.

Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, ,