Article ID Journal Published Year Pages File Type
2459 Acta Biomaterialia 2010 8 Pages PDF
Abstract

Inorganic polyphosphate (poly(P)) can promote binding between fibroblast growth factors and their receptors and enhance osteoblastic cell differentiation and calcification. This study evaluated the possibilities for poly(P) adsorbed onto interconnected porous calcium hydroxyapatite (IP-CHA) as a new bone regeneration material. Prepared 1%, 5%, 25% and 50% poly(P)/IP-CHA composites showed the elution peak of poly(P) between 15 and 20 min, respectively, with the highest value from 50% poly(P)/IP-CHA in vitro. Histologically, at 1 week of placement into the femur of rabbits, granulation tissue had penetrated into the pores in all composites and IP-CHA as a control. In contrast, at 2 weeks of placement, newly formed lamellar bone was found in all groups, although a higher amount of bone regeneration was obviously formed in the 25% and 50% poly(P)/IP-CHA with a significantly higher value of bone regeneration ratio of 50% poly(P)/IP-CHA. These results indicate that 25% and 50% poly(P)/IP-CHA composites may enhance initial bone regeneration.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , , , , ,