Article ID Journal Published Year Pages File Type
24602 Journal of Biotechnology 2009 6 Pages PDF
Abstract

To investigate the effect of hyperosmotic medium on production and aggregation of the variant of Angiopoietin-1 (Ang1), cartilage oligomeric matrix protein (COMP)–Ang1, in recombinant Chinese hamster ovary (CHO) cells, CHO cells were cultivated in shaking flasks. NaCl and/or sorbitol were used to raise medium osmolality in the range of 300–450 mOsm/kg. The specific productivity of COMP–Ang1, qCOMP–Ang1, increased as medium osmolality increased. At NaCl-450 mOsm/kg, the qCOMP–Ang1 was 7.7-fold higher than that at NaCl-300 mOsm/kg, while, at sorbitol-450 mOsm/kg, it was 2.9-fold higher than that at sorbitol-300 mOsm/kg. This can be attributed to the increased relative mRNA level of COMP–Ang1 at NaCl-450 mOsm/kg which was approximately 2.4-fold higher than that at sorbitol-450 mOsm/kg. Western blot analysis showed that COMP–Ang1 aggregates started to occur in the late-exponential phase of cell growth. When sorbitol was used to raise the medium osmolality, a severe aggregation of COMP–Ang1 was observed. On the other hand, when NaCl was used, the aggregation of COMP–Ang1 was drastically reduced at NaCl-400 mOsm/kg. At NaCl-450 mOsm/kg, the aggregation of COMP–Ang1 was hardly observed. This suggests that environmental conditions are critical for the aggregation of COMP–Ang1. Taken together, the use of NaCl-induced hyperosmotic medium to cell culture process turns out to be an efficient strategy for enhancing COMP–Ang1 production and reducing COMP–Ang1 aggregation.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , , ,