Article ID Journal Published Year Pages File Type
246021 Archives of Civil and Mechanical Engineering 2015 10 Pages PDF
Abstract

The main aim is to present the Stochastic perturbation-based Finite Element Method analysis of the stability and also reliability of the underground steel vertical cylindrical structure of the waste container. This thin walled structure with constant cross-sectional thickness is loaded with subsoil pressure, snow and surface as well as dead loads and we look for the critical pressure value, when stability loss would be observed; it is done to design in the probabilistic context the safety margins. We employ to achieve this goal the Finite Element Method program ROBOT and computer algebra system MAPLE to get the analytical polynomial functions relating the critical pressure and random design parameters – shell thickness and its Young's modulus as well as to provide all probabilistic calculations. We determine up to the fourth order probabilistic characteristics of the structural response assuming that the input random parameters have Gaussian probability functions truncated to the positive values only. Finally, the reliability index is calculated according to the first order method using a difference in-between critical pressure and maximum tensile stress determined in this structure to verify its durability according to the demands of EU engineering codes.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, ,