Article ID Journal Published Year Pages File Type
2466 Acta Biomaterialia 2007 9 Pages PDF
Abstract

This work aimed to investigate the use of an organically modified porous silica matrix (poly(methacryloxypropyl)–poly(silsesquioxane); P-MA–PS) as a release system for heparin. The matrices were obtained from methacryloxypropyltrimethoxysilane (MAS) via the sol–gel process under acidic conditions following photochemical polymerization and cross-linking of the organic matrix. Modulation of the polymerization degree of the organic matrix in the range 0–71% allowed adjusting the release kinetics of heparin according to therapeutic needs. It was demonstrated that higher drug loads and a decreasing polymerization degree resulted in a faster release profile of heparin, which followed a square root of time kinetic according to the Higuchi model. The hydrolytic degradation of hybrid xerogel was found to follow a zero-order kinetic whereas the heparin concentration did not show an influence on the degradation rate of the matrix. Since the released heparin retained its biological activity, the P-MA–PS matrices are of clinically interest, e.g. as coating on drug eluting coronary stents.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , ,