Article ID Journal Published Year Pages File Type
247703 Building and Environment 2016 9 Pages PDF
Abstract

•This study presents the indoor environmental data-driven occupancy models.•An occupancy detection model based on the decision tree model is proposed.•An occupancy prediction model based on hidden Markov model is proposed.•The proposed occupancy models are validated through experiments in a test-bed.

Occupant presence and behavior in buildings have significant impact on space heating, cooling and ventilation demand, energy consumption of lighting and appliances, and building controls. For this reason, there is a growing interest on modeling occupant behavior, especially occupancy information. An occupancy prediction model based on an indirect approach using indoor environmental data is important due to privacy concerns and inaccurate measurements associated with the direct approach using cameras and motion sensors. However, such an indirect-approach-based occupancy prediction model has not yet fully discussed in building simulation domain. To tackle these issues, this study aims to develop an indoor environmental data-driven model for occupancy prediction using machine learning techniques.The experiments in the Building Integrated Control Test-bed (BICT) at Dankook University was conducted to collect the ground truth occupancy profiles, indoor and outdoor CO2 concentrations and electricity consumptions of lighting systems and appliances for a data mining study. The results show that the proposed indoor environmental data-driven models for occupancy prediction using the decision tree and hidden Markov model (HMM) algorithms are well suited to account for occupancy detection at the current state and occupancy prediction at the future state, respectively.

Related Topics
Physical Sciences and Engineering Energy Renewable Energy, Sustainability and the Environment
Authors
, ,