Article ID Journal Published Year Pages File Type
2478582 Annales Pharmaceutiques Françaises 2006 9 Pages PDF
Abstract
Telomeres are composed of single-strand DNA rich in guanine which can adopt particular structures such as T-loop or G-quadruples, a four-strand DAN structure formed by guanine repeats. Telomeric single-strand DNA is the substrate of telomerase, an enzyme necessary for telomeric replication which is suppressed in most cancer cells and which participates in tumor genesis. The formation of a telomeric Gquadruplex blocks telomerase activity and offers an original strategy for new anti-cancer agents. Using an original approach combining rational screening and synthesis, several series of compounds have been identified which specifically bind to the telomeric quadruplex. These derivatives, called “Gquadruplex DNA ligands”, are able to block telomeric replication in cancer cells and provoke replicative senescence and/or apoptosis after a few cell cycles. Our team is working on characterizing the cellular and molecular mechanisms of action of these ligands. Using mutant cell models resistant to these ligands or expressing a protein cuff covering the telomere in tumor lines, we have demonstrated that the telomere is the principal intracellular target of action of these compounds and the implicit existence of the G-quadruplex structure. In collaboration with academic and industrial partners, optimization of these ligands to develop pharmacologically active products should enable in vivo validation of a new thereapeutic concept.
Related Topics
Health Sciences Pharmacology, Toxicology and Pharmaceutical Science Drug Discovery
Authors
, , ,