Article ID Journal Published Year Pages File Type
2478907 Drug Metabolism and Pharmacokinetics 2015 8 Pages PDF
Abstract

In this study, we examined the induction of epithelial–mesenchymal transition (EMT) by transforming growth factor (TGF)-β1 and drugs in genetically engineered type II alveolar epithelial cell line RLE/Abca3. Treatment of RLE/Abca3 cells with TGF-β1 induced marked changes in cell morphology from epithelial-like to elongated fibroblast-like morphology. With these morphological changes, mRNA expression of epithelial markers such as cytokeratin 19 (CK19) decreased, while that of mesenchymal markers such as α-smooth muscle actin (α-SMA) increased. TGF-β1 treatment also decreased the mRNA expression of Abca3, a type II cell marker, and formation of lamellar body structures. Interestingly, the effect of TGF-β1 on Abca3 mRNA expression was observed in RLE/Abca3 cells, but not in wild-type RLE-6TN, A549, and H441 cells. Treatment of RLE/Abca3 cells with bleomycin (BLM) and methotrexate (MTX) induced similar morphological and mRNA expression changes. In addition, the increase in α-SMA and the decrease in Abca3 mRNA expression by these drugs were observed only in RLE/Abca3 cells. These findings suggest that, like TGF-β1, BLM and MTX induce EMT in RLE/Abca3 cells, and RLE/Abca3 cells would be a good model to study drug-induced EMT. The effect of pirfenidone, an antifibrotic and anti-inflammatory drug, on EMT induced by TGF-β1 was also discussed.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Health Sciences Pharmacology, Toxicology and Pharmaceutical Science Drug Discovery
Authors
, , , , ,