Article ID Journal Published Year Pages File Type
2480479 European Journal of Pharmaceutical Sciences 2014 7 Pages PDF
Abstract

No genes are yet directly implicated in etiology of male infertility. Identification of genes critical at various stages of spermatogenesis is pivotal for the timely diagnostic and treatment of infertility. We previously found that L-GILZ deficiency in a mouse KO model leads to hyperactivation of Ras signaling and increased proliferation in spermatogonia, resulting in male sterility.The possibility to establish culture cell system that maintains spermatogonial cells in vitro allowed us to delivery a recombinant protein TAT-L-GILZ able to restore normal proliferation rate in gilz KO spermatogonia. We also found that N-terminal part of L-GILZ protein is responsible for Ras/L-GILZ protein-to-protein interaction, important for the control of proliferation rate of spermatogonia. Therefore, treatments increasing L-GILZ expression, such as delivering small molecules or peptides that mimic L-GILZ functions, are approaches with great potential of applicability for new therapeutic strategies based on gene/protein delivery to the affected testes.

Graphical abstractFigure optionsDownload full-size imageDownload high-quality image (162 K)Download as PowerPoint slide

Related Topics
Health Sciences Pharmacology, Toxicology and Pharmaceutical Science Drug Discovery
Authors
, , , , , , , , , ,